35,619 research outputs found

    Finite-time synchronization of non-autonomous chaotic systems with unknown parameters

    Full text link
    Adaptive control technique is adopted to synchronize two identical non-autonomous systems with unknown parameters in finite time. A virtual unknown parameter is introduced in order to avoid the unknown parameters from appearing in the controllers and parameters update laws. The Duffing equation and a gyrostat system are chosen as the numerical examples to show the validity of the present method.Comment: 6 pages, 4 figures.Submitted to The 8th IEEE International Conference on Control & Automatio

    Self-supervised CNN for Unconstrained 3D Facial Performance Capture from an RGB-D Camera

    Full text link
    We present a novel method for real-time 3D facial performance capture with consumer-level RGB-D sensors. Our capturing system is targeted at robust and stable 3D face capturing in the wild, in which the RGB-D facial data contain noise, imperfection and occlusion, and often exhibit high variability in motion, pose, expression and lighting conditions, thus posing great challenges. The technical contribution is a self-supervised deep learning framework, which is trained directly from raw RGB-D data. The key novelties include: (1) learning both the core tensor and the parameters for refining our parametric face model; (2) using vertex displacement and UV map for learning surface detail; (3) designing the loss function by incorporating temporal coherence and same identity constraints based on pairs of RGB-D images and utilizing sparse norms, in addition to the conventional terms for photo-consistency, feature similarity, regularization as well as geometry consistency; and (4) augmenting the training data set in new ways. The method is demonstrated in a live setup that runs in real-time on a smartphone and an RGB-D sensor. Extensive experiments show that our method is robust to severe occlusion, fast motion, large rotation, exaggerated facial expressions and diverse lighting

    Keypoint Based Weakly Supervised Human Parsing

    Full text link
    Fully convolutional networks (FCN) have achieved great success in human parsing in recent years. In conventional human parsing tasks, pixel-level labeling is required for guiding the training, which usually involves enormous human labeling efforts. To ease the labeling efforts, we propose a novel weakly supervised human parsing method which only requires simple object keypoint annotations for learning. We develop an iterative learning method to generate pseudo part segmentation masks from keypoint labels. With these pseudo masks, we train an FCN network to output pixel-level human parsing predictions. Furthermore, we develop a correlation network to perform joint prediction of part and object segmentation masks and improve the segmentation performance. The experiment results show that our weakly supervised method is able to achieve very competitive human parsing results. Despite our method only uses simple keypoint annotations for learning, we are able to achieve comparable performance with fully supervised methods which use the expensive pixel-level annotations

    Density Sensitive Hashing

    Full text link
    Nearest neighbors search is a fundamental problem in various research fields like machine learning, data mining and pattern recognition. Recently, hashing-based approaches, e.g., Locality Sensitive Hashing (LSH), are proved to be effective for scalable high dimensional nearest neighbors search. Many hashing algorithms found their theoretic root in random projection. Since these algorithms generate the hash tables (projections) randomly, a large number of hash tables (i.e., long codewords) are required in order to achieve both high precision and recall. To address this limitation, we propose a novel hashing algorithm called {\em Density Sensitive Hashing} (DSH) in this paper. DSH can be regarded as an extension of LSH. By exploring the geometric structure of the data, DSH avoids the purely random projections selection and uses those projective functions which best agree with the distribution of the data. Extensive experimental results on real-world data sets have shown that the proposed method achieves better performance compared to the state-of-the-art hashing approaches.Comment: 10 page

    Finite-time synchronization between two different chaotic systems with uncertainties

    Full text link
    A new method of virtual unknown parameter is proposed to synchronize two different systems with unknown parameters and disturbance in finite time. Virtual unknown parameters are introduced in order to avoid the unknown parameters from appearing in the controllers and parameters update laws when the adaptive control method is applied. A single virtual unknown parameter is used in the design of adaptive controllers and parameters update laws if the Lipschitz constant on the nonlinear function can be found, while multiple virtual unknown parameters are adopted if the Lipschitz constant cannot be determined. Numerical simulations show that the present method does make the two different chaotic systems synchronize in finite time.Comment: 20 pages, 4 figure

    Block Markov Superposition Transmission of BCH Codes with Iterative Erasures-and-Errors Decoders

    Full text link
    In this paper, we present the block Markov superposition transmission of BCH (BMST-BCH) codes, which can be constructed to obtain a very low error floor. To reduce the implementation complexity, we design a low complexity iterative sliding-window decoding algorithm, in which only binary and/or erasure messages are processed and exchanged between processing units. The error floor can be predicted by a genie-aided lower bound, while the waterfall performance can be analyzed by the density evolution method. To evaluate the error floor of the constructed BMST-BCH codes at a very low bit error rate (BER) region, we propose a fast simulation approach. Numerical results show that, at a target BER of 10−1510^{-15}, the hard-decision decoding of the BMST-BCH codes with overhead 25%25\% can achieve a net coding gain (NCG) of 10.5510.55 dB. Furthermore, the soft-decision decoding can yield an NCG of 10.7410.74 dB. The construction of BMST-BCH codes is flexible to trade off latency against performance at all overheads of interest and may find applications in optical transport networks as an attractive~candidate.Comment: submitted to IEEE Transactions on Communication

    Resampling Strategy in Sequential Monte Carlo for Constrained Sampling Problems

    Full text link
    Sequential Monte Carlo (SMC) methods are a class of Monte Carlo methods that are used to obtain random samples of a high dimensional random variable in a sequential fashion. Many problems encountered in applications often involve different types of constraints. These constraints can make the problem much more challenging. In this paper, we formulate a general framework of using SMC for constrained sampling problems based on forward and backward pilot resampling strategies. We review some existing methods under the framework and develop several new algorithms. It is noted that all information observed or imposed on the underlying system can be viewed as constraints. Hence the approach outlined in this paper can be useful in many applications

    Preserving Data-Privacy with Added Noises: Optimal Estimation and Privacy Analysis

    Full text link
    Networked system often relies on distributed algorithms to achieve a global computation goal with iterative local information exchanges between neighbor nodes. To preserve data privacy, a node may add a random noise to its original data for information exchange at each iteration. Nevertheless, a neighbor node can estimate other's original data based on the information it received. The estimation accuracy and data privacy can be measured in terms of (ϵ,δ)(\epsilon, \delta)-data-privacy, defined as the probability of ϵ\epsilon-accurate estimation (the difference of an estimation and the original data is within ϵ\epsilon) is no larger than δ\delta (the disclosure probability). How to optimize the estimation and analyze data privacy is a critical and open issue. In this paper, a theoretical framework is developed to investigate how to optimize the estimation of neighbor's original data using the local information received, named optimal distributed estimation. Then, we study the disclosure probability under the optimal estimation for data privacy analysis. We further apply the developed framework to analyze the data privacy of the privacy-preserving average consensus algorithm and identify the optimal noises for the algorithm.Comment: 32 pages, 2 figure

    A Gradient-Aware Search Algorithm for Constrained Markov Decision Processes

    Full text link
    The canonical solution methodology for finite constrained Markov decision processes (CMDPs), where the objective is to maximize the expected infinite-horizon discounted rewards subject to the expected infinite-horizon discounted costs constraints, is based on convex linear programming. In this brief, we first prove that the optimization objective in the dual linear program of a finite CMDP is a piece-wise linear convex function (PWLC) with respect to the Lagrange penalty multipliers. Next, we propose a novel two-level Gradient-Aware Search (GAS) algorithm which exploits the PWLC structure to find the optimal state-value function and Lagrange penalty multipliers of a finite CMDP. The proposed algorithm is applied in two stochastic control problems with constraints: robot navigation in a grid world and solar-powered unmanned aerial vehicle (UAV)-based wireless network management. We empirically compare the convergence performance of the proposed GAS algorithm with binary search (BS), Lagrangian primal-dual optimization (PDO), and Linear Programming (LP). Compared with benchmark algorithms, it is shown that the proposed GAS algorithm converges to the optimal solution faster, does not require hyper-parameter tuning, and is not sensitive to initialization of the Lagrange penalty multiplier.Comment: Submitted as a brief paper to the IEEE TNNL

    Output Feedback Tracking Control for a Class of Uncertain Systems subject to Unmodeled Dynamics and Delay at Input

    Full text link
    Besides parametric uncertainties and disturbances, the unmodeled dynamics and time delay at the input are often present in practical systems, which cannot be ignored in some cases. This paper aims to solve output feedback tracking control problem for a class of nonlinear uncertain systems subject to unmodeled high-frequency gains and time delay at the input. By the additive decomposition, the uncertain system is transformed to an uncertainty-free system, where the uncertainties, disturbance and effect of unmodeled dynamics plus time delay are lumped into a new disturbance at the output. Sequently, additive decomposition is used to decompose the transformed system, which simplifies the tracking controller design. To demonstrate the effectiveness, the proposed control scheme is applied to three benchmark examples.Comment: 22 pages, 7 figure
    • …
    corecore